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PLANETARY WAVES ON BETA-PLANES 
RICHARD D. LINDZEN 

National Center for Atmospheric Research, Boulder, Colo. 

ABSTRACT 

The problem of linearized oscillations of the gaseous envelope of a rotating sphere (with periods in excess of a 
day) is considered using the @-plane approximation. Two particular &planes are used-one centered a t  the equator, 
the other at a middle latitude. Both forced and free oscillations are considered. With both 8-planes it is possible 
t o  approximate known solutions on a sphere. The use of either 8-plane alone, however, results in an inadequate 
description. In particular it is shown that the equatorial @-plane provides good approximations to the positive equiv- 
alent depths of the solar diurnal oscillation, while the midlatitude 8-plane provides good approximations to the 
negative equivalent depths. The two 8-planes are also used to describe Rossby-Haurwitz waves on rapidly rotating 
planets, and the vertical propagatability of planetary waves with periods of a day or longer. 

1. INTRODUCTION 

One of the simplest general types of problems of 
importance to atmospheric dynamics is that of linearized 
wave motions in the gaseous envelope of a rotating sphere. 
The waves are generally taken to be small perturbations 
on a barotropic, motion-free basic state. The pressure is 
generally assumed to be hydrostatic and the fluid is 
assumed to  be inviscid and adiabatic; the horizontal 
component of the Earth’s rotation is neglected. This 
problem has been dealt with in great detail by Eckart 
[ 5 ] ,  Margules [16], Dikii [4], Golitsyn and Dikii [7], 
Rossby et al. [22], Haurwitz [8], Longuet-Higgins [15], 
and many others. In  view of the above approximations and 
assumptions, the solutions must be applied with caution 
to actual atmospheric phenomena. For some phenomena 
such as the daily tidal and thermotidal oscillations of the 
atmosphere the solutions provide a remarkably accurate 
description (Butler and Small [2], Lindzen [14]), while for 
other phenomena such as Rossby-Haurwitz waves the 
solutions provide an illuminating insight into the basic 
physics of a process which in its observed form is modified 
by baroclinity, nonlinearity, etc. 

The problem, though simple in principle and con- 
celitually important, is mathematically complicated. The 
equations it leads to are separable in latitude, longi- 
tude, and altitude dependences. However, the latitude 
dependence is described by Laplace’s Tidal Equation, 
and as late as 1960, Eckart [5] could state that, “Despite 
the number of papers that have been devoted to this 
equation, its theory is still in a quite unsatisfactory state.” 
Most of the solutions presently available for this equ a t’ ion 
apply either to  specific cases or asymptotic limits (Hough 

[l l] ,  Dikii [4], Golitsyn and Dikii [7], Lindzen [14], Kato 
[12], etc.). To a certain extent, even the recent, extensive 
numerical investigation of Laplace’s Tidal Equation by 
Longuet-Higgins [15] suffers from these limitations. The 
difficulty of the equation has prevented the development 
of simple formulae of great generality. 

In this paper we shall show that by the use of two 
0-planes-one centered a t  the equator, the other a t  some 
middle latitude-simple relations may be obtained which 
approximate with fair accuracy almost all results presently 
available from analyses of Laplace’s Tidal Equation: The 
simplicity of the 0-plane equations permits, without 
difficulty, the extension of our results to conditions on 
planets other than the Earth and to frequencies and wave 
numbers not previously explored in detail. In  particular, 
new results will be presented on the vertical propagatabil- 
ity of planetary-scale waves with periods longer than a 
day. The presentb results will also give concrete examples 
of the adequacies and inadequacies of particular 0-planes. 

2. BASIC EQUATIONS 

The equations are in essence those of classical atmos- 
pheric tidal theory as described in Siebert 1231. However, 
the spherical surface is replaced by a plane surface where y 
is distance in the northward direction and 2 is distance 
in the eastward direction. z is height above the surface. 
The only effect of the Earth’s sphericity which is retained 
is to permit the vertical component of the Earth’s rotation 
to vary linearly in y. This approximation is described in 
many places-Rossby et al. [22], and Veronis [%I, [27],’ 

Veronis [27] runs into difficulty with the neglect of the horizontal component of the 
Earth’s rotation. The mathematical foundations for this neglect aregivenbyFhillips119~. 
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for example. The equations are, assuming time and longi- 
tude dependences of the form 

With (6)-(9), equations (1)-(5) become 

~WU’ - (j+&/)v‘= --ikSp‘, (10) 

(11) 
a iwv‘+ (j+Py)u‘= -- apt,  

(1) 

(2) 

iwu-(j+&/)v=--ik - 6P 

Po by ap 

Po 

hY i a  iwv+ (j+Py)u= -- - 

-=- asp gap az (3) 

(4) iw6p+w +O+pB d z  (iku+e+$)=O 

iuap+w dp”=ygH dz (iWsP+W %)+(y-l)Poe7 (5) 

where 
u= eastward velocity 
v = nor thward velocity 

w=vertical velocity 
ap=pressure oscillation 
g= acceleration by gravity 
y= cp/ca= I .4 
J=externd heat excitation per unit mass per unit 

time 
po=basic density 
po=basic pressure 
H=local scale height=RTo/g 

iwf3p’=iwygHGP’+g( 1 -y)w’+ (7- l)ph‘2J. (14) 

In passing, it should be noted, that the only effect of 
including a constant basic zonal velocity, uo, in our equa- 
tions would be to replace w in equations (10)-(14) by 
the Doppler shifted frequency wfku,. We shall return 
to this point later. 

Eliminating u’, w’, and 6p’ from equations (10)-(14). we 
obtain 

b k  

and 

a i  
K 

f+py is the approximation to 2Q sin e, where fiwg (%-I-; bv‘ k (f+fly)v’)=O, (16) 

Q=Earth’s rotation rate 
e=latitude 

where K= (y- 1)/y. 

Eliminating 6p’ from equations (15) and (16) leads to 
The origin of our y coordinate is that latitude, eo, where - . .  

f=2Q sin Bo; i.e., j = O  if Oo=O. Similarly, ~ = ( 2 Q / l a )  cos Bo, 
where a=radius of Earth. 

H - K Jz[((f+PY>”-w2>v’1 
The basic state is taken to be motion free and dependent 

only on z. The basic fields are related by the following 
euuations 

po=poRTo= Po@ (7) 

where To=basic temperature. 
Although consideration of a nonisothermal atmosphere 

is straightforward, we shall, in this paper, confine ourselves 
to an isothermal basic state. Then H is constant, and 
from (6) and (7) 

po=po(0)e-Z’H. (8) 

The introduction of the following variables simplifies 
matters 

(17) 
where 

Now, for a given o and k consider the set of functions 
{iPnek, o} resulting from the following eigenfunction- 
eigenvalue equation 

where h ,  k ,o  (commonly called the equivalent depth) is 
the eigenvalue. Equation (20) is the #&plane‘ counterpart 

V’=ppv, u’=pyu, W’=ppw, 

d ~ ’ = p ; ’ ~ ~ 6 p ,  6p‘=p;’/26p. (9) 



July 1967 Richard D. Lindzen 443 

of Laplace's Tidal Equation (boundary conditions will be 
discussed later). Assuming {!Ifn,  r,,,} is complete, we may 
expand v' as follows: 

We may also write 

Equations (20), (21) ,  (22), and (17) yield 

where the subscripts k,w are assumed to be understood. 
Equation (23) is merely the vertical structure equation of 
classical atmospheric tidal theory for an isothermal basic 
state. In  the following two sections we will discuss 
equations (23) and (20) in greater detail. 

3. VERTICAL STRUCTURE EQUATION 
We  ill in the remainder of this paper consider two 

situations: (a) forced oscillations where J z O ,  and k and 
w are specified, and (b) free oscillations. 

I n  the case of forced oscillations, the h, values are ob- 
tained as eigenvalues of equation (20). The inhomogeneous 
equation (23) is then solved for the vertical structure of the 
various modes-subject to boundary conditions. The lower 
boundary condition is usually derived from the require- 
ment w=O a t  z=O. The upper boundary condition depends 
on the sign of the factor [(K/Hhn)-(l/4@)] in equation 
(23). If it is negative, then the solutions behave exponen- 
tially in z ,  and the requirement that V ,  remain bounded as 
z+ m is sufficient. When [ (K/H~,J  - (1/4H2)] is positive, the 
solutions are vertically propagating waves, and what the 
upper boundary condition should be is a matter of con- 
troversy although the radiation condition is often invoked 
(Wilkes [ Z S ] ,  Yanowitch [29]).  This controversy need not 
concern us here. The important point is merely that when 
[(K/Hh,) - (1/4HZ)]  is negative, energy is trapped near the 
levels of excitation, while when [(K/Hhn-- (1/4H2)] is posi- 
tive, energy may propagate away from the levels of excita- 
tion.2 This is shown in figure 1 for an atmosphere with 
H=7.5 km. (T0=256" IC.). For h>S.57 km. the amplitude 
of v increases as one leaves the excitation levels (recall 
from (8) and (9) that 

however, the energy (apOv2) decreases. For h<O the ampli- 
tude and energy both decrease. For 0<h<8.57 energy 
propagates vertically in the form of waves with wave- 

2 These and subsequent statements are for isothermal atmospheres. Exact analogous 
statements may be made for a thermally stratified atmosphere (Siebert [23], Dikii [4]). 

Enorgy trapped rhrn L'15. km 

-so -40 -30 -20 -0 0 IO 20 30 40 50 60 
h(b.m) 

FIGURE 1.-Energy trapping as a function of equivalent depth (see 
text for details). 

r 

m 

FIGURE 2.-Vertical wavelength as a function of equivalent depth. 

lengths given by 2n/[(~/Hh,) - (1/4H2)]1'2. Wavelength as a 
function of h is shown in figure 2. 

I n  general, when S,=O in (23), the only solution satisfy- 
ing both boundary conditions is Vn=O. However, there 
can exist values of h for which nontrivial homogeneous 
solutions exist. These values of h correspond to the free 
oscillations of the atmosphere. For an isothermal atmos- 
phere where J=O, the condition w=O a t  z=O implies 
(after some manipulation) that 

It turns out (Siebert [23], for example) that for an iso- 
thermal atmosphere there is only one h for which a homo- 
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geneous solution satisfying (24) and bounded as z-+w 
exists. This h is given by 

h=yB. (253 

For hypothetical temperature structures (in general un- 
realized in the real atmosphere) it is possible to have two 
and more h's (Taylor [24], Wilkes [28]). However, the im- 
plication of the recent work of Fleagle [6] that there are 
an infinite number of free vertical modes is merely an 
artscial result of using a rigid lid a t  a finite altitude as 
an upper boundary. Our procedure for free modes will be 
to insert I t ,  as given by equation (25), in (20) and consider 
w rather than h as the eigenvalue. Alternately, we may 
consider those W'S and k's for which h= yHis an eigenvalue 
of equation (20) as the free modes of the atmosphere. 

4. LATITUDE STRUCTURE EQUATION 
Equation (20) may be rewritten 

Two special cases of equation (24) are usually studied: 
(a) an equatorially centered 8-plane for which j = O ,  and 
B=29/u; (24) becomes 

(b) a midlatitude &plane where f is evaluated a t  some 
middle latitude, and 8 is ignored' unless it appears with 
const'an t factors; (24) becomes 

Applications of equation (25) in an oceanographic con- 
text may be found in Rattray 1201, Hendershott [9], and 
Veronis [26],  [27]; applications to  the atmosphere may be 
found in Rosenthal [21] and Matsuno [17]. Applications 
of equation (26) axe very widespread. Examples may be 
found in Rossby et al. [22], and Thompson [25]. 

Equation (26) is an approximation to (24); (25) is, in 
fact, identical to (24). The exact midlatitude version of 
(24) may be obtained from (25) by a shift of the y co- 
~ r d i n a t e . ~  I t  should also be noted that (25) can, fortui- 
tously perhaps, be obtained from (26) by replacing f with 
2Qy]a and j3 with 2Qja. 

The following two intuitive points should be kept in 
mind when using (25) and ( 2 6 ) :  

(a) Because of the identity of equations (24) and (25), 
any solution of (25) which decays sufficiently fast before 

3 This, of course, is formally true only when /is linear in v. 

Iyl=yp, the value y corresponding to the North Pole, does 
not depend on the fact that j ,  on a @-plane, goes to in- 
finity and hence, is likely to be a valid approximation to 
solutions on a sphere. Any solution that does not decay 
before yp cannot be a valid approximation. 

(b) Because f, in equation (26), does not go to infinity, 
the solutions of (26) may be valid approximations in 
cases when the solutions of (25) are not. 

5. GENERAL SOLUTIONS 
EQUATORIALLY CENTERED &PLANE 

We shall take as our boundary conditions that *+O as 

(27) 

5=cy4y. (29) 

Equation (25) becomes 

'*n*'*w+ ( C ~ ; l l ~ - ~ 2 ) q n , k , o = ~ ,  (30) dt2 

which is merely Schroedinger's equation for an harmonic 
oscillator whose solutions (Morse and Feshbach [18]) are 
given by 

q n , k ,  w=e-1'2E2Hn(t), (31) 

and Hn(5) is the Hermite Polynomial of order n. Since 
we are dealing with an equatorially centered &plane, the 
effective distance from the Earth's axis is a; periodicity 
in the x-direction then requires that 

(33) k=-3 S where s=O, f 1, f 2 ,  . . . . 
a 

Equation (32) becomes 

For free modes h , , ,  is replaced by h=yH, and equation 
(34) is solved for W, or more commonly for c, the longi- 
tudinal phase speed; i.e., c=wa/s. Equation (34) becomes 

For forced modes, s and w are given and (34) is solved for 
hn.8,0 yielding, 
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aQ(2n+l) s= 
s2 (2- 1)  ($- 

r = a  cos eo  
d = a  ( + - e o )  n 

(36) 

Note that equation (36) has two solutions. Recall from 
Section 4 that it is necessary for 9 to decay before IyI=yp 
in order for -Jr to be a valid approximation to a solution 
on a sphere. \k begins to decay for lyl's greater than tliat 
for which 

(37) 
(; s 2Q s2 

T-2+$)-(Ty-$=o. 2Q 

Let us denote this y by yd. From (37), and (34) 

(38) &= (2nS 1)-* 43 
(3 

yd is thus seen to be smaller when the minus sign obtains 
in equation (36) than when the plus sign obtains. In  
practice, it has usually happened that 9 is not a valid 
approximation when the plus sign obtains. 

The condition yd<yp is a necessary, but, as pointed out 
by Longuet-Higgins [15] and Matsuno [17], insufficient 
condition in one instance. When n=O, one solution of 
equation (35) is c=2aa and for this solution u' does not 
remain bounded as y--+ w . Hence, the solution is invalid. 
Moreover it corresponds to no solution on a sphere. 

FIGURE 3.-Geometry for midlatitude B-Plane (see text for details). 

For the above boundary the solutions to 

(41 a) 

equation (26) are 

*n.s, ,=sin (g(d-y)) for s # l  MIDLATITUDE @-PLANE 

The geometry for this case is shown in figure 3. and 

j=2a sin eo (394 q , ,  ,=COS ((2ni1)T(d-y)) for s = l  (41b) 

20 
a p=- COS e, 

d=a 6-9,) 
Also, 

r=a cos eo. (39d) and 
6,=0 for s#1 
=+ for s=l 

k=- s=o, f l ,  f 2 ,  . . ., (40) a cos e, For free modes (42) becomes 

(43) 

as a result of longitudinal periodicity. The boundary con- 
ditions used are 

a2 cos2 eo 

*=l at  y=+d for s= l ,  
\E=O at  y= +d for s#1, 
*=Oat y=-d. where 

The conditions at  v=+d are based on the behavior of 

+gh 2Qa z:s3 ''=O, (44) 

7 and h=rH. wa COS 0, e=- 
S 

1 

known Hough functions (i.e., solutions of Laplace's 
Tidal Equation). The condition * = O  at y=-cl is approxi- 
mately relevant to symmetric heating functions. It should 
also be relevant to asymmetric heating functions when 
the Hough functions decay near the equator. 

For forced modes we have from (42) 
w ~ - ~ Q ~  sin2 0, 

ghn,s,w= p 2  2% S2 
-@(n-Ss)2----+ a2w az cos2 Bo 

(45) 
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Note that for small enough w and large enough s, h , , ,  
is negative. Referring back to section 3 we see that nega- 
tive h implies that the wave is trapped in the vertical. 
Note also that equation (45) has only one solution. 

6. SOLAR DIURNAL OSCILLATIONS 
The solar diurnal oscillation forms a particularly good 

case to check some of the equations developed in section 5. 
First, there are now available fairly complete solutions of 
Laplace's Tidal Equation for this case (Eato [12], Lindzen 
[14]). Second, these solutions fall naturally into two classes: 
one with eigenfunctions concentrated near the equator 
and positive equivalent depths, the other with eigenfunc- 
tions concentrated in middle latitudes and negative 
equivalent depths. 

For the solar diurnal oscillations 

22.1 22. 1 f m  
.658 750.5 0. 698 
.zL1 2210. .24 
.11% 4332. .121 
.m2 7160. ,0722 
,04565 10700. .0489 

w=O and s=l. (46). 

Using equation (36) we obtain for the equatorial 
&plane 

Midlatitude & 
plane 

n h, (km.) 

1 -10.4 
2 -1.987 
3 -. 7595 

and 

Kato [12] 
- 

h,symmetric (km.) h ,  asymmetric am.) 
-12.2 _.._..._...____... 
-1.75 -1.79 -. 63 -. 64 

where n=O, 1, 2, . . . . Even values of n correspond to 
asymmetric (with respect to  the equator) thermal excita- 
tions, while odd values of n correspond to symmetric 
excitations. Equation (47) may be rewritten as follows 

where u 2 Q 2 / g ~ 2 2 . 1  km. for the earth. The values of h, 
given by (49) are shown in table l a .  

In order for q,, as given by equation (48), to be valid 

yd must be less than yp (viz, sections 4 and 5). y,a2u. 7r 

For n s  1, equation (49) may be approximated as follows 

From equations (50), (51), and (38) we have 

and 

For n=O 

gg ( 2 . ~ l + l ) ~ u ~  for h+,.  (53) 

(54) 

TABLE 1.-Equivalent depths: 

a for Solar Diurnal Equatorial Modes 

I Equatorial @-plane 1 Kato [I21 

n I h-, (krn.) 1 hCn (km.) I h,"exsct" (km.) 

for both h+,  and h--, (they are identical). From equation 
(52) we see that all the solutions for h - ,  should be valid 
approximations, while from (53) we see that all the solu- 
tions for h+,  (with the exception of n=O) should be 
invalid. On the other hand we see from (52) that those 
solutions which are valid span only the region between 
y=O and lyl=u/2. There must, for purposes of complete- 
ness, also be solutions spanning the region between u/2 
and 7ra/2. These are, presumably, described by the mid- 
latitude @-plane. 

Turning now to the midlatitude ,%plane let us take 
O,=r/3. Then from equations (46) and (45) we obtain 

Note that the h,'s obtained from (55) are negative. They 
are listed for n=l to 3 in table l b .  

Finally we list in tables la and b the "exact" values of 
h as obtained by Lindzen [14] and Kato [12]. We see the 

(a) There is a consistent correspondence between mid- 
latitude @-plane results and negative equivalent depths 
on a sphere. Moreover, the negative equivalent depths 
for symmetric and asymmetric modes on a sphere tend to 
become equal, while the @-plane doesn't distinguish one 
from the other. This property of negative equivalent 
depth modes has also been described by Longuet-Higgins 
u51. 

(b) There is, not surprisingly, no correspondence between 
any of the "exact" values and the values of h + ,  obtained 
from equation (49). 

(c) For n z l ,  there is a consistent correspondence 
between the values of h--, obtained from (49) and the 
positive equivalent depths on a sphere. 

(d) For n=O, h--,=22.1 km. This mode appears to 
correspond to the solution on a sphere for which h=m. 

- *  

following: 
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While the correspondence is not close, 22.1 km. is a large 
equivalent depth. 

The results of this section show that for the solar 
diurnal oscillation, it is possible to approximate, by the 
use of two separate P-planes, almost all the results obtained 
from an analysis on a sphere. However, neither of the 
&planes considered would have been adequate by itself. 

I 

7. ROSSBY-HAURWITZ WAVES 
For the free oscillations of the atmosphere (where h= 

yH for an isothermal basic state) the relevant dispersion 
relations are either equation (35) for an equatorial p- 
plane or equation (44) for a midlatitude p-plane. Each is 
a cubic equation for c (or equivalently in m) .  For suffi- 
ciently large s their three solutions may be interpreted as 
a gravity wave traveling west, a gravity wave traveling 
east, and an inertial oscillation (ie., an oscillation for 
which c+O as Q+O)  traveling west. The first two corre- 
spond to Laplace’s solutions of the first kind while the 
third corresponds to Laplace’s solution of the second kind. 
In  meteorology the third is known as a Rossby-Haurwitz 
wave. For small s, these waves are not readily distinguished 
from each other (viz, Matsuno [17], for example). It is 
not, however, the purpose of this paper to present a 
detailed analysis of equations (35) and (44). It will suffice 
to  note that when the gravity and inertial modes are 
clearly separable, the dispersion relation for the latter is 
given by a balance of the last two terms in either (35) or 
(44). Thus, for the equatorial P-plane 

2 S2alS2 CA 
2Qa 1 

1+(2n+l) - - 
s2 6 h  

while for the midlatitude P-plane 

where Bo has been taken to be n/4. Equations (56) and (57) 
are quite similar. However, their dependences on 29al 
@ (called e1I2 by Longuet-Higgins [15], and y1i2 by Golit- 
syn and Dikii [7]) are markedly different. 

The dispersion relation on a sphere corresponding to 
(35) or (44) for P-planes is also cubic in c. Hence, for a 
given n and s, equations (56) and (57) must be different 
approximations to the same inertial wave. As an intuitive 
extension of the results of the last section we expect that 
(56) is a valid approximation when yd<yyp. When y d > y p ,  

we expect (57) will be a reasonable approximation. A 
comparison of equations (56) and (57) with asymptotic 
relations derived from Laplace’s Tidal Equation will show 
these conjectures to be correct. We will demonstrate this 
u t  the end of this section. 

-I 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

(2) 
FIGURE 4.-Latitude distribution of meridional velocity of first few 

free Rossby-Haurwitz modes for ~=4!il~a~/gh= 1200. 

From (38) we have 

where 
4Q2a2 

Equation (58) applies to all the solutions of (35)-not 
merely to (56) ; it shows that for e sufficiently large and n 
sufficiently small, (56) ought to be the appropriate ex- 
pression for the phase speed of a Rossby-Haurwitz wave. 
Equation (58) also shows that the limit cannot be 
taken without regard to the behavior of n ;  Le., for a given 
E, equation (56) should hold onlyif n is sufficiently small. 
This important point is ignored by Golitsyn and Dikii 
[7] and mentioned only peripherally by Longuet-Higgins 

We shall now see what e is for various special cases. In 
the case of an isothermal basic state (T0%256” K.) for the 
Earth’s atmosphere, h=yHG 10.5 km. and ~ s 1 1 . 9 ;  
e1I2g3.45. Thus from equation (58 ) ,  we have that the 
equatorial p-plane gives valid approximations for n 1 2 .  
For larger n’s, (57) would appear to be a more suitable 
approximation. For Jupiter, on the other hand, eZ1200 
(Golitsyn and Dikii [7]) or ~ “ ~ E 3 4 . 6 .  In this case (56) 
should be valid for n 5 2 0 .  Only for larger n’s should (57) 
be appropriate on Jupiter (since (57) refers formally only 
to symmetric modes, n in (57) corresponds to 2n in (56)). 
The approximate eigenfunctions associated with (57) 
(viz, equation (41)) are sinusoidal and span all latitudes 
with comparable amplitudes. The latitude structures of 
the free oscillations of the Earth’s atmosphere are more or 
less of this nature. For planets with large e’s the eigen- 
functions are not of this nature for sufficiently small n. 
In figure 4 we show the * i s  (for the first few odd values 
of n) as given by equation (31) for e=1200. Only as n 
becomes large do the eigenfunctions begin to  span all 
latitudes. The structural implications of this difference for 

e=-. 
sh 

~ 5 1 .  
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the circulation of Jupiter’s atmosphere have not yet been 
explored. 

We finally come to the demonstration of the respective 
validity of equations (56) and (57) for small and large n. 
This demonstration is facilitated if we consider the non- 
dimensional period of the oscillations; Le., 

a 
ek 

7=- 

instead of c. Equation (56) becomes 

or for large e 

Equation (57) becomes 

or for large e and n 

(59) 

Reference to Golitsyn and Dikii [7] now shows that (61) 
is identical with the asymptotic solution on a sphere 
for large t (and sufficiently small n) while (63) is identical 
with Hough’s asymptotic solution on a sphere for a given 
e and sufficiently large n.* 

8. FORCED OSCILLATIONS WITH PERIODS LONGER 
M A N  A DAY 

For oscillations of tidal periods the nature of the forcing 
is clear. For oscillations of other periods the nature (or 
even existence) of excitations is less clear. Conceptually, 
however, it proves convenient to assume that such features 
as nonlinearity and baroclinity in the basic state, omitted 
in equations (1)-(5), may excite a wide spectrum of dis- 
turbances in a manner analogous to the way in which 
turbulence may excite acoustic waves (Lighthill [13]). The 
consideration of long-period forced oscillations in the 
present context may, therefore, reveal feahres of a t  least 
qualitative relevance to the atmosphere’s circulation. In 
particular, the differences between the equivalent depths 
(and hence vertical propagation properties) of modes 
characteristic of equatorial regions and of midlatitudes for 
the solar diurnal oscillation suggests that similar differences 
should exist for oscillations of longer periods as well. 

In the light of the results of sections 6 and 7 we expect 
that the equivalent depths associated with the equatorial 
modes will be given approximately by equation (36) where 
the minus sign is assumed to obtain; i.e., 

* Golitsyn and Dikii [7] refer to Hough’s solution as valid for small E. Reference, how- 
ever, t o  the original work of IIough [Ill shows that it should be valid for any e if n is suf- 
ficiently lame. 

. [ I - {  1 - ~ ( ~ ~ ( ~ - 1 ) } 1 ’ 2 ~ -  Q2 2 n f l  (64) 

The eigenfunctions associated with equation (64) are 
given by (31). The latitude at  which these modes begin 
to decay is given by (38). When 

is sufficiently small, (64) and (38) yield 

Thus we see that the equatorial modes become increasingly 
confbed to the equator as the period (=2a/u) gets longer. 

The equivalent depths associated with midlatitude 
modes should be given approximately by equation (45), 
which, for Oo=n/4, may be rewritten 

Both (64) and (66) are readily evaluated and extensive 
tables of solutions may be obtained in a negligible time on 
any current digital computer. For our purposes a consider- 
ation of selected cases will suffice. 

We will consider the midlatitude modes first. In figure 
5 we see h as a function of period ( = ) Z ~ / w l )  and longi- 
tudinal wave numbers (181) for n=l and westward moving 
waves (u and s both of the same sign). For periods of less 
than 5 days (increasing as s increases) h is either greater 
than 8.57 km. or negative and the waves cannot propagate 
vertically (see section 3). For longer periods h becomes 
positive and less than 8.57 km. For such periods waves can 
propagate vertically with wavelengths as given in figure 2. 
For periods less than 30 days, the vertical wavelengths are 
in excess of 10 km. The situation for values of n greater 
than 1 is similar, except that as n increases, theminimum 
period at  which h changes from negative to positive occurs 
at  increasing values of s. This is seen in figure 6 where the 
period at  which h changes sign is shown as a function of n 
for different values of s. While the minimum period at  
which the change occurs corresponds t o  higher values of s 
as n increases, it is also true that for any particular $, the 
period for the changeover increases monotonically with n. 

It is often remarked that tropospheric motions seem to 
decay with height as one reaches the vicinity of the tropo- 
pause because of the increasing static stability. Although 
high static stability inhibits buoyant convection, refer- 
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FIGURE 8.-h as a function of w / 2 n  (= l/period) for n=1, 9=3 and 
n=3, s=5 (for midlatitude modes). 

ence to  Siebert [23] (where one may find the analog of 
equation (23) for a thermally stratified basic state) shows 
that static stability does not have such a role in trapping 
planetary waves. However, in figure 6 we see that for 
certain periods and wave numbers the Coriolis force due 
to  the Earth’s rotation prevents vertical communication. 
Since much of the energy of the atmosphere’s motions (in 
the troposphere) occurs for periods in the neighborhood 
of 5 days and longitudinal wave numbers in the neighbor- 
hood of 5, this mechanism is likely to be of primary 
importance. 

The situation for eastward moving waves (s and w 
having different signs) is shown in figure 7 where h as a 
function of period and longitudinal wave number is shown 

for n=l. In general, eastward moving waves are associated 
with small negative equivalent depths and are, therefore, 
strongly trapped. The situation for other values of n is 
similar. 

One of the main obstacles to the applicability of the 
present results is that they have been developed for an 
atmosphere whose mean state is motion-free. What are 
the effects on planetary waves of a vertically varying 
mean zonal flow? From the work of Charney and Drazin 
[3], Bretherton [I], and Hines and Reddy [IO] we see that 
the effects are in general complicated both to describe and 
to  obtain. One of the effects, however, is to  cause a Dopp- 
ler shift in the frequency of a wave in a manner de- 
scribed in section 2, and this effect is readily describable 
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in the present context. In figure 8 we show h as a function 
of 427r (i.e., l/period) for two particular pairs of n and s 
( n = l ,  s=3, and n=3, s=5). The particular choice of n, 
s is not  significant. Let us consider a wave for which n=3, 
s=5 and w / 2 ~ = 0 . 5  day-' in the absence of any zonal 
flow. Such a wave will have a negative h and hence does 
not propagate vertically. An easterly zonal flow will, how- 
ever, cause a Doppler shift in the frequency downward 
and for a sufficient easterly flow, 

w Doppler shifted - (ofkU mean) 
% 27r 

will be less than 0.125 day-'. From figure 8 we see that 
h will then be positive and less than 8.57 km. The wave 
may then propagate vertically. This result is similar to 
some results of Charney and Drazin [3] on the untrapping 
of planetary waves. Consider now a wave with n=3, s=5 
and w/2~=0.05 day-' in a layer of air with no mean 
zonal flow. Let this layer be surmounted by another layer 
with a large enough easterly flow to cause a Doppler shift 
in the frequency to a small negative value. The wave will 
propagate vertically in the lower layer, but will not propagate 
in the upper layer. Hence, it will be reflected at  the inter- 
face. Because of diffusion, Kelvin-Helmholtz instabilities, 
etc., there can, of course, be no discontinuity in the zonal 
flow and the change must occur continuously. But, from 
figure 8 we see that as the Doppler shifted frequency 
approaches zero, h approaches zero. As a result, the verti- 
cal wavelength of the wave and hence its vertical phase 
speed will approach zero, and the wave will never reach 
the interface. These results are surprisingly similar to 
those obtained by Hines and Reddy [lo] for gravity waves 
in a nonrotating atmosphere. The above hardly consti- 
tutes an analysis of wave propagation in the presence of 

- 

shear. It does, however, provide a framework for inter- 
preting some of the results of more careful analyses. 

Turning, now, to  the equatorial modes, we find, not 
surprisingly, that the situation differs significantly from 
that at.midlatitudes. I n  figure 9 we see h as a function of 
period and longitudinal wave number for n = l  and west- 
ward moving waves. The situation is essentially the same 
for other values of n (except n=O) and for eastward 
moving waves. h is small and positive for all cases con- 
sidered. Thus, for all "long" periods and all longitudinal 
wave numbers the equatorial modes propagate vertically 
with short vertical wavelengths. The possibility exists 
that these equatorial modes might be excited by vertically 
trapped planetary waves a t  midlatitudes, and thus serve 
as an energy sink for midlatitude waves. The investigation 
of this possibility, while important, is beyond the scope 
of the present paper.5 

9. CONCLUSIONS AND SUMMARY 
The equations of classical atmospheric tidal theory were 

developed for an arbitrary &plane. Two special &planes 
were then considered: one centered at  the equator, the 
other a t  a middle latitude. It was found that it is necessary 
and usually adequate to use both @-planes in order to 
approximate all the results that would be obtained from an 
analysis on a sphere. The analysis of the two &planes is, 
however, far easier than the analysis of Laplace's Tidal 
Equation for a sphere. As examples of the utility of the 
two @-planes several separate examples were treated: 

(a) Approximate formulae for the equivalent depths- 
both positive and negat ivefor  solar diurnal oscillations 
were obtained. 

(b) Dispersion relations for Rossby-Haurwitz waves on 
a rapidly rotating planet were obtained. In particular it 
was shown that the usual terrestrial formula holds for 
sufficiently large latitudinal wave numbers. For low lati- 
tudinal wave numbers the Rossby-Haurwitz waves are 
confined to tropical regions and are described by a some- 
what different dispersion relation. 

(c.) Equivalent depths were obtained for terrestrial 
atmospheric oscillations of arbitrary longitudinal wave 
numbers and periods of one day or more. Associated with 
each longitudinal wave number and period were two sets 
of modes-one confined to  equatorial regions, the other 
to  the remaining latitudes. On interpreting equivalent 
depths as measures of the vertical propagation properties 
of the modes, it was found for the latter that all eastward 
traveling waves and all westward traveling waves with 
periods less than about 5 days are vertically trapped; 
westward propagating waves with sufficiently long periods 
can, however, propagate vertically. On the other hand, all 
the equatorial modes can propagate vertically-usually 
with very short vertical wavelengths. 

a It should be noted that the use 01 an upper lid in a numeri-a1 experirr ent would P r e  
vent the examination of the possibility. 
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